Milking Practices Recommended to Assure Milk Quality and Prevent Mastitis
By G.M. Jones, Professor of Dairy Science and Extension Dairy Scientist, Milk Quality & Milking Management, Virginia Tech.
Table of Contents
Introduction
Pre-Milking
Milking
Post-Milking
Summary
References
Introduction
The establishment of mastitis infections is related to conditions that expose the teat end to bacteria (e.g., contaminated teatcup liners, common wash or dry cloths, milkers' hands, dirt or manure in dirty free stalls, muddy environment) and to situations that make it easier for these bacteria to penetrate the teat canal (e.g., squawking or slipping teatcup liners, flooded milk tubes or claws). They travel into the mammary gland where the infection causes an inflammatory response that can cause destruction of milk-secreting cells and release of leukocytes or somatic cells. The bacteria that usually cause mastitis are: Staphylococcus aureus, Streptococcus agalactiae, environmental streptococci, and coliforms. The most successful mastitis control programs concentrate on identifying and eliminating those conditions that expose the teat end to bacteria, assist their penetration through the teat canal, or interfere with the body's immune system. Also they regularly monitor the herd's mastitis status.
All of the bacteria listed above can be minimized by proper milking technique, combined with a properly designed and maintained milking system, and environmental conditions that allow cows to remain clean, dry, and comfortable. To minimize mastitis problems and to milk cows more effectively, attention must be paid to cow preparation, stimulation of milk let-down, and procedures used to apply or remove teat cups. From 1962-65, scientists with the National Institute for Research in Dairying in Reading, England, conducted two large field experiments involving 29 herds and 2200 cows and found that a pre-milking hygiene routine of disinfectant udder wash, individual towels, disinfecting rubber gloves worn by milkers, and teat dipping reduced new infections by 44%. In addition to these practices, pasteurization of teatcup clusters with hot water (185 degrees for 5 seconds) reduced new infections by 58%. The general goals for most herds should be to recover all of the milk that cows are bred and fed to produce in as short a period of time as necessary while minimizing effects on udder health and milk composition. However, many dairy farms pay too little attention to the importance of proper milking practices and routine.
Pre-Milking Procedures
Stimulation Causes Milk Let-down
Milk is produced throughout the day by milk secreting cells (alveoli) located deep within the udder (they resemble bunches of grapes). About 60% of this milk is stored until milking within the alveoli and small ducts that drain the alveoli. The remainder is stored in large ducts and udder cistern. For complete, fast milk-out, the cow must be stimulated to let down her milk. Sensitive receptors for stimulating milk let-down are located in the teat skin. After stimulation of these receptors, a signal is sent to the brain, and the pituitary gland releases a hormone, oxytocin, into the blood. Oxytocin travels to the udder and causes contraction of the muscle fibers (or myoepithelial cells) that surround the alveoli. Contraction forces milk into the large ducts and udder cistern where the milking machine then can remove the milk. A normal milk let-down can be interrupted if cows become frightened or excited either before or during milking. Environmental stresses reduce milk yield, increase milking time, and may cause mastitis. Milking routines need to be consistent from day to day and milker to milker and cows need to be handled gently. On many farms, the time delay from first stimulation until units are applied (to be referred to as stimulation time) ranges from 2 to 6 minutes. These long stimulation times can contribute to lower milk production and fat percentage, slower milking, and higher somatic cell counts or mastitis problems. Maximum oxytocin concentration in the blood occurs 1 minute after the beginning of stimulation. Within 1.5 to 2 minutes, oxytocin concentration drops dramatically to half the maximal concentration and let-down is reduced.
For most effective milk let-down, attach the units after 1-minute stimulation. Use a clock to time yourself and, if necessary, change your routine. A 3-5 minute stimulation time has been shown to reduce milk production by 16%. In contrast, many milkers spend only 5 to 8 seconds to wash and dry a cow's teats. A 5-8-second hand wash with running water was shown to be ineffective in stimulating milk let-down. By comparison, hand stimulation of the teats for 30 seconds increased milk production by 26 to 33%. One recent study found that 5 powerful squirts of foremilk should be removed, followed by scrubbing the teat five times for 20 seconds.
Studies at the University of Minnesota indicate that stimulation times of less than 1 minute or more than 2 minutes are associated with the development of severe, chronic lesions on teat ends. Get in the habit of attaching the milking machine at 1 minute from the time that stimulation begins.
Don't prepare too many cows in advance. Milking units should be attached within 1.5 minutes. If cows are dirty and you spend more time on any one cow, don't proceed to the next cow until after the unit is attached to the first cow.
Milkers Should Wear Gloves
S. aureus has been isolated from noses and hands of dairy workers which could serve as sources of mastitis infections for cows and heifers. English workers included rubber gloves in their hygiene routine, which reduced new infections by 44%. Packs of 100 latex or vinyl disposable gloves cost from $.11 to $.19 per glove. Dairy workers should consider using disposable gloves that would be disinfected throughout milking and thrown out at the end of every milking, especially if herds are infected with S. aureus.
Use Strip Cup
Stripping 4-5 squirts of milk from each quarter is beneficial because it allows you to detect early stages of clinical mastitis, removes foremilk which may have high bacteria counts, may serve as the primary stimulus for milk let-down, and assists in reducing mastitis. During foremilk stripping, wipe dry dirt off the teat with the hand.
In USDA (Beltsville) studies, stripping before washing and drying the udder reduced the incidence of new udder infections from 18 to 7%. Stripping after udder preparation was less effective. Foremilk stripping assists in the early detection of clinical mastitis. Look for the presence of flakes, clots or stringiness, or watery secretions. Hard quarters that are warm or enlarged provide an early warning that the cow has clinical mastitis and that her milk should not be added to the bulk tank.
Use a strip cup with a black surface. The detection of a watery secretion may indicate that a problem is developing. Take the affected cow's temperature. Many mastitis organisms are air-borne and live outside the udder. When a strip cup is not used, milk often is squirted onto the feet and legs of the cow being prepared, or the adjacent cow. Infections can be transferred via the feet and legs to the bedding, whereby an uninfected cow may use the stall next and become infected. The bacteria can thrive in dirty, wet stalls. If milk is squirted on the parlor floor, flush it away with a water hose. Do not squirt foremilk on hands.
Wash Teats with a Sanitizing Solution
Scrub teats and teat ends thoroughly with a paper towel or direct a stream of sanitizing solution on the teats and wash by hand. Do not wet the udder beyond 2 to 3 inches above the teats. Remove all dirt and manure from teats, including back sides of teats that are most difficult to reach. Use only as much water as needed to cleanse the teat. The more water you use, the harder it is to dry off teats. Long hair on udders should be removed regularly as dirt and manure may adhere to the udder and make it more difficult to properly clean and dry teats.
Do not wash teats with a common sponge or cloth. A bucket of sanitizing solution does not kill all bacteria present on a common udder cloth or sponge. Thus, these bacteria are transferred from infected cows to clean cows. Use a paper or cloth towel on one cow only.
Pre-dipping
Pre-dipping, where cows' teats are dipped in germicidal teat dip prior to milking, has become an important part of the pre-milking preparation. It can serve as a substitute for washing teats with sanitizer. However, dirty teats must be cleaned before pre-dipping. Dip should remain on the teat approximately 30 seconds before it is dried-off with a paper or cloth towel. Drying is important to avoid increased teat dip residues in milk. Pre-dip will destroy those microorganisms which contaminate the teat skin between milkings. Pre-dipping has reduced new cases of mastitis caused by coliforms and environmental streptococci. Also, be sure to continue to teat dip after milking.
The same teat dip can be used as a pre- or post-dip, but two different dippers should be used. Dippers are preferred over sprayers unless use of sprayers results in adequate coverage of backsides of teats. If iodine teat dips are used, low iodophor concentrations (0.5% or less) should be used since 1% iodophor has resulted in a mild increase in milk iodine content. Dips should contain up to 10-14% skin conditioner (e.g., glycerol, lanolin) for prevention of chapping.
The effectiveness of pre-milking teat dipping is reduced by wet and dirty cows. Such cows should receive a first wash of the teat with either a wet paper towel or hand washing, but don't wet the udder. Pre-dip after the dirt has been washed away.
Cleaning and Sanitizing Gel
Scientists at Louisiana State University tested the effectiveness of a gel containing 0.5% iodophor and glycerol when applied to teats for 30 seconds and dried with a single service paper towel. When compared to washing with water followed by iodine pre-dip, gel treatment reduced somatic cell counts, bacteria counts, infection rate, and cases of clinical mastitis. The gel resulted in shorter prep times and greater parlor throughput.
Dry Teats Thoroughly
Teatcups should be applied to clean, dry teats. When water droplets on the udder drain toward the teat end, they pick up bacteria. This dirty water can be sucked inside the teatcup and raise the bacteria count. Admitting large amounts of air into the teatcup causes milk droplets to move backward and up the milk tube. It's similar to a fine aerosol spray, causing milk droplets and any bacteria inside the teatcup liner (contaminated liners or dirty water on teat ends) to impact against the teat end.
Bacteria may strike the teat ends with enough force to cause them to enter the teat canal. These impacts are caused by vacuum loss created when units are attached, when units are removed without shutting off the vacuum, by squawking teatcups, machine stripping, or unit falloff.
Dry wet teats and udders thoroughly. Leave no water on the teat or udder. Use single service paper or cloth towels. Do not use any towel on two cows as infection may spread. Do not fold the cloth towel over and use the back side for a second cow. Cloth towels do a better job of getting teats dry, are preferred by milkers, and may be cheaper, but they must be laundered before next use.
Milking
Milking Routine
Establish a uniform work routine that results in smooth cow flow, uses good milking practices, and makes the best use of your time.
Prep cow 1: forestrip; wash and/or pre-dip.
Follow the same procedure with cow 2 and perhaps a 3rd cow.
Return to cow 1, dry with single-service towel and attach milking unit.
Dry and attach milking units to cows 2 and 3.
Go to next 2-3 cows and follow same routine used for cows 1-3.
Handling the Milking Unit
Adjust and align teatcups so the quarters milk out properly. As the teatcup is attached, hold the short milk tube down over the claw ferrule to minimize the amount of air that rushes in. Position the teat inside the teatcup so that milk flow is not impeded. Use a support arm for milker hoses or claws. If a teatcup should squawk, adjust it as soon as possible. Vacuum loss contributes to the reverse movement of milk droplets inside the liner and bacteria can impact against the teat end and enter the teat canal. When replacing teatcup liners, be sure the liner does not become twisted inside the shell. Also, make sure there isnÂșt any water between the shell and the liner. If milking only three teats, twist the fourth teatcup and lay it over the claw so that it does not admit air. If plugs are used, wash them properly after milking.
Machine Stripping Isn't Necessary
In most cases, if cows are properly prepared and milked with a good milking system, machine stripping is not necessary. If practiced, machine stripping should take no more than 15 to 20 seconds. Massage each quarter in a gentle downward motion with one hand while applying a slight downward pressure on the claw with the other hand. Do not exert enough pressure to cause air to leak around the mouthpiece or to cause the teatcup to slip.
Research conducted by USDA at Beltsville showed that 1.6 minutes of machine stripping resulted in higher somatic cell counts and more milk being discarded because of mastitis. Nebraska studies suggested that milking techniques were improved, working conditions were more relaxed, and labor efficiency was higher by eliminating stripping.